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A short and efficient route to tricyclic ring system containing bridged bicyclo[2.2.2]octanone annulated
with a lactone ring present in the maoecrystal is described. In-situ generation of spiroepoxycyclohexa-
2,4-dienone and intramolecular cycloaddition are the key features of our approach.
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Figure 1. Structure of maoecrystal V (1) tricyclic compound 2 and the aromatic
precursor 3.
Recently maoecrystal V (1) (Fig. 1), a diterpene, was isolated
from Chinese herb Isodon eriocalyx by Sun and co-workers.1 It
exhibits potent inhibitory activity against HeLa cells and thus ap-
pears to be a promising anticancer agent.1 Maoecrystal V possess
a highly complex and functionalized pentacyclic molecular archi-
tecture that contains a bridged bicyclo[2.2.2]octane framework
annulated with a lactone ring and a spirocyclic six-membered ring
along with a five-membered ring ether. The complex structure of 1
coupled with its biological potential has stimulated significant
interest in its synthesis.2 Though synthesis of maoecrystal V has
not been achieved yet, several research groups have reported
imaginative approaches towards its synthesis.2

Rapid generation of molecular complexity from simple precur-
sors is one of the important features of synthesis design and devel-
opment of methodology.3 Tandem reactions and multicomponent
reactions are often employed to achieve these objectives.4 Recently,
the reactive species derived from arenols such as cyclohexa-2,4-die-
none ketals and congeners have proved to be an important tool and
provided an efficient method for the synthesis of a diverse array of
molecular structures and natural products.5–7 We have a long stand-
ing interest in the chemistry of 6,6-spiroepoxycyclohexa-2,4-die-
nones, especially in its inverse demand p4s + p2s cycloaddition and
the chemistry of adducts in ground and excited states.7
ll rights reserved.
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In view of the contemporary interest in maoecrystal and our
continuing interest in the creation of molecular complexity from
aromatics,7 we considered developing a simple, efficient and ste-
reo-selective route to tricyclic compounds 2 (Fig. 1) containing a
bridged bicyclo[2.2.2]octanone ring annulated with a lactone ring
which comprises the structure of maoecrystal V. We wish to report
our exploratory results herein.
Figure 2. Cyclohexa-2,4-dienone 4 and spiroepoxycyclohexane-2,4-dienone 5.
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Scheme 2. Synthesis of aromatic precursor 3. Reagents and conditions: (i) p-TsOH,
dimethoxypropane, acetone, rt, 72.5%; (ii) OsO4, NMO, aq. acetone, 90%; (iii) NaIO4,
aq. MeCN, 0 �C, 2 h, 81%; (iv) NaBH4, aq. MeOH, 99%; (v) acrolyl chloride, CH2Cl2,
diisopropyl ethyl amine, DMAP, 95%; (vi) aq. HCl, THF, rt, 91.8%.

Scheme 3. Synthesis of tricyclic keto-epoxide 6.
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Conceptually, the tricyclic lactone of type 2 may be directly ob-
tained by intramolecular Diels–Alder reaction in the cyclohexa-
2,4-dienone of type 4 (Fig. 2). However, compound 4 is inaccessible
as it is a tautomer of the corresponding phenol.

Hence, we considered employing an equivalent of the dienone 4
especially the 6,6-spiroepoxycyclohexa-2,4-dienone 5. We contem-
plated that intramolecular endo-cycloaddition in embellished spi-
roepoxycyclohexa-2,4-dienone 5 would provide tricyclic keto-
epoxide 6 and that manipulation of the oxirane ring and reduction
of the double bond would lead to desired tricyclic lactone 2 (Scheme
1). The spiroepoxycyclohexa-2,4-dienone 5 was thought to be
generated by oxidative dearomatization of aromatic precursor 3.

There are several key features of our strategy. For example, all the
carbon atoms of the tricyclic intermediate 2 and the required func-
tional groups are derived from the aromatic precursor 3. Remark-
ably, the bridged bicyclic system annulated with the lactone ring
required in the intermediate 2 is present in latent form in the precur-
sor 3 and it is generated in a single stereo-selective step.

In order to realize the aforementioned objective, the o-hydroxy-
methyl phenol 3 was easily prepared from the readily available7c

compound 7 (Scheme 2). Thus, protection of 1,3-diol group as ace-
tonide followed by oxidative cleavage of the double bond and
reduction of the resulting aldehyde gave the compound 8 in excel-
lent yield. Acylation of 8 with acrolyl chloride followed by hydro-
lysis of the acetonide efficiently furnished the desired precursor 3.

Towards the oxidative dearomatization and intramolecular
cycloaddition, a solution of compound 3 in acetonitrile was oxi-
dized with aq. NaIO4 following a procedure developed earlier in
our laboratory.8 Chromatography of the product mixture furnished
the tricyclic keto-epoxide 6 as a consequence of intramolecular
cycloaddition along with the dimer 9, the latter arising as a result
of intermolecular cycloaddition between two moles of the cyclo-
hexa-2,4-dienone 5 (Scheme 3).

It appeared that intermolecular cycloaddition between two mo-
les of cyclohexa-2,4-dienone 5 is competing to a significant extent
under the aforementioned mild reaction conditions. Therefore, it
was thought that pyrolysis of 9 may also generate the species 5
which may undergo efficient intramolecular cycloaddition as a re-
sult of thermal activation. Indeed, heating the dimer 9 at 140 �C
gave the desired adduct 6 in high yield as a consequence of ret-
ro-Diels–Alder/Diels–Alder cascade (Scheme 3).9

The structure of adduct 6 was deduced from the following spec-
tral characteristics and further confirmed through single crystal X-
ray analysis. Thus, the IR spectrum of 6 showed two absorption
bands at 1744 and 1733 cm�1 for the carbonyl groups. The 1H
NMR spectrum (300 MHz) displayed characteristic signals at d
6.65 (dd, J1 = 8.1 Hz, J2 = 6.9 Hz, 1H) and 5.84 (d, J = 8.1 Hz, 1H)
for olefinic protons. The difference in the chemical shift of the ole-
finic protons is a manifestation of homoconjugation of the C@C p-
bond with the carbonyl group in a bridged bicyclo[2.2.2]octane
framework. This clearly indicated that cycloaddition had occurred.
Similarly, the methylene group of spiro-oxirane ring appeared as
part of AB pattern at distinct chemical shifts d 3.20 (JAB = 6.2 Hz,
1H) and 2.92 (part of AB system partly merged with another m,
JAB = 6.2 Hz, 1H). Further signals were observed at d 4.47 (dd of part
of an AB system, JAB = 12.2 Hz, J2 = 6.1 Hz, J3 = 3 Hz, 1H), 4.30
(superimposed dd of part of an AB system, JAB = 12.2 Hz,
Scheme 1. Strategy for the synthesis of compound 2.
J2 = J3 = 4.5 Hz, 1H) for OCH2 protons of the lactone ring. In addi-
tion, signals were observed at d 3.06–2.90 (complex, m, 2H),
2.78–2.66 (m, 1H), 2.40–2.32 (merged m, 2H), 2.06–1.74 (complex
m, 1H). 13C NMR of adduct 6 also corroborated with its structure as
it exhibited characteristic signals at d 202.1, 172.2 and 137.4, 132.1
for the carbonyl carbons and olefinic carbons, respectively. Further
signals were observed at d 65.2, 57.1, 53.5, 51.0, 39.3, 37.8, 26.1
and 24.0 for other carbons. These spectral features suggested the
gross structure of adduct. However, in order to ascertain the
endo-stereochemistry and stereochemistry at the spiro-oxirane
centre, X-ray crystal structure was undertaken which confirmed
its structure (Fig. 3).

It may be worth noting the stereoselectivity during the afore-
mentioned cycloaddition as well as rapid generation of complex
and functionalized molecular structure from a simple aromatic
precursor. Further the presence of a-keto-epoxide functionality
in the adduct 6 provided a unique opportunity for further
manipulation.
Figure 3. X-ray crystal structure of adduct 6.



Scheme 4. Synthesis of tricyclic intermediate 2.
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Thus, the adduct 6 was treated with Zn in the presence of NH4Cl
in aq. MeOH at ambient temperature (�30 �C) which gave the b-
hydroxyketone 10 in excellent yield (93%) which upon Jones’
oxidation and decarboxylation furnished the keto-lactone 11
(Scheme 4). Catalytic hydrogenation of 11 readily gave the desired
compound 2 which represents the tricyclic core of maoecrystal V.
The structure of all the compounds was clearly revealed from their
spectral data.9

In summary, we have presented an efficient and stereo-selec-
tive route to tricyclic core structure of maoecrystal V from a simple
aromatic precursor. A tandem oxidative dearomatization of appro-
priately appended o-hydroxymethylphenol and intramolecular
cycloaddition gave a tricyclic adduct having bridged bicy-
clo[2.2.2]octanone framework annulated with the lactone ring.
Manipulation of the oxirane ring and the double bond furnished
the desired intermediate. The present methodology constitutes a
nice example of creation of molecular complexity from aromatics
which is an important aspect of synthesis design.3
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